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Globally optimal solution describing a phase conjugated field of Raman scattering on the resonant Br X
transition of iodine I2 is studied. Maximum optical coherence is found as a top eigenvalue problem. A
reversibility theorem has been stated. This provides sufficient conditions for a tightly localized waveform
and molecular hologram to exist. A noisy picosecond pulse has been computed to show how femtosecond
polarization is regained at target time.

1. Introduction

Molecular wave packet engineering has attracted much
attention in the works collected under the rubric of “quantum
control”.1-14 Current world-wide efforts in the problematic have
been mounted to develop efficient methods for breaking selected
molecular bonds11-14 or to harness specific molecular states for
optical processing devices and spectroscopic uses. The rapid
progress did not take a long time, because it was prepared by
the enormous lore in photomolecular spectroscopy accumulated
since Lord Rayleigh epoch and the beginning of quantum
mechanics. From the other hand, optimal control theory
comprising dynamic programming and modern variational
calculus has been the subject of mathematical studies enabling
to propose a theoretical apparatus to the quantum control.
Of prime importance were the minimum quantum uncertainty

states introduced by Schro¨dinger. For decades they were meant
of only as “Gedankenexperimente”. Up-to-date femtosecond
technique has made it possible to observe both classically
confined states of Rydberg atoms4 and space-localized wave
packets in molecules.6,9 The title of this paper obliges us to
restrict ourselves by the latter. The quantum control theory of
ultrafast events close to dissociation limit of diatomic molecules
is our major concern. The challenge here is to find optimal
laser excitation of picosecond scale causing femtosecond
radiation of an optically thin sample.
We shall deal with the subject regarding the iodine I2

molecule as our test example. Diatomic iodine in gas or
condensed state has become the reference standard15 and ideal
benchmark16,17in modeling the wave-packet evolution. Our task
is greatly facilitated by the considerable volume of researches,
in which the quantun control of molecular motion has been
exploited theoretically.5,7,9 The following experiments6,8,9with
the laser-induced fluorescence (LIF) have supported the idea
of wave-packet localization inside a molecule. These works
have again emphasized the link of the phase modulated
photoexcitation and molecular vibrations, which was broadly
known in Raman spectroscopy from 1920s.18

The goal yet achieved in the dynamic quantum control9

includes localization of the vibrational wave packet at the
attractive side of molecular potential. This scheme was referred
to as the molecular reflectron.5 Bulk literature has been devoted
to focusing the matter states.3-9 The right posed theoretical
limits10,11 indicate an existence of femtosecond coherence.
Our approach to the problem of a drastical shortening optical

transient of a single molecule is started from a crucial relation
between a time-reverse molecular dynamics and phase conjugate
resonance scattering field. A considerable interest presents a
justification of the relation, which, despite its generality, we
have not been able to find in the literature. There are two
aspects: designing a right chosen objective and tailormaking
optimal optical pulses. To understand how they appear, it is
worth noting that the rapid improving of femtosecond techniques
is based on compression of chirped light pulses provided by
the well-established wave guides in optics. One can borrow
the key element of the pulse compression physics to apply it to
squeezing an optical coherence inside molecular space. Namely,
the Franck-Condon region must play a role both dispersive
wave guide and frequency modulator owing to molecular
vibrations.
The vibrational wave packet is expected to be focused at will

on inner Franck-Condon region, since the Franck-Condon
factor is at its maximum at the steep repulsive curve. Simul-
taneously the momentum variance∆p≈ 2MV0 will be maximal
at this point with V0 being the wave-packet velocity. The
uncertainty principle∆p∆q∼ p guarantees a tight localization
∆q of the rebound wave packet. Thus, its overlap with the
ground state, having the variance∆q0 . ∆q, lasts just for recoil
lifetime (∼∆q0/V0) and gives rise to ultrashort coherent transient.
This picture appeals to the “billard ball” model,19 which still
remains to be extended to involve spreading wave packets on
molecular curves. As example we shall look at the reflectron
scheme.
The specific iodine reflectron5,6,9works at certain frequency

above the ground state X. A tailored electric field excites the
B state until the wave packet begins to concentrate near an outer
turning point far removed from the location of the original
Franck-Condon transitions. The closer the excitations to the
dissociation limit, the longer a delay before the wave packet
will be reflected from the outer curve and moves back to inner
repulsive core. From here the wave packet recoils and may

* Corresponding author.
† Laboratory AiméCotton.
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radiate photons of resonant frequency to the B-X transition,
so that an optical coherence begins to appear with a some delay.
This “dark” period might cause a fluorescence to spark at a
chosen time.
Having the name drawn from the electronic prototype, the

molecular reflectron is the scheme to create vibrational wave
packet and to focus it on a desired material target. Our prime
interest is a radiation process, in which the wave packet is
periodically returning into resonance Franck-Condon region
and recoiling from it. Hence, a molecular “magnetron” is the
best-fitting term to our design, which underlines a parallel
between optical-molecular and radio-electronic phenomena.
In fact, the vibrational wave packet spreading assisted by
molecular anharmonicity could be negated by the tailored laser
pulse, because an interplay between its modulation and quantum
dispersion squeezes the wave packet, as does a properly chirped
radio pulse propagating along a dispersive delay line.
Molecular states promoted nearby their dissociation limit can

be localized more tightly than the ground state by itself. For
the excited levels are quasiclassical in their nature. Thus, we
can treat the recoil lifetimeτrec as a kinematical overlap of the
state X and B presented schematically in Figure 1. Here, the
resonance Franck-Condon transitions are drawn by the vertical
arrows; the horizontal arrows designate the wave packet motion.
The wave-packet velocityV and recoil timeτrec are found from
the potential functions (molecular curves shown in Figure 1)
as

The distanceR0 ) 2.7 Å is the equilibrium molecular position
in the ground X state of I2. The∆R is a maximum variance
for the overlapping states, whereε is the energy of excitation
(equal to an optical frequency) andM is the reduced mass of
I2. The variance∆R ) (p/MΩ)1/2 ≈ 0.05 Å (with Ω ≈ 214
cm-1) for the ground state is more than it for focused B wave
packet on the inner molecular wall. Furthermore, if its variance
is disregarded, the recoil lifetime is limited below by the
magnitudeτrec ≈ 15 fs. The state B can be populated at the
energyε ≈ 19050 cm-1 (∼525 nm) for a more long time than
the recoil timeτrec. Setting the gate of excitation by the typical

vibrational periodT ≈ 546 fs at ε, one can measure the
squeezing by the ratioT/τrecwhich is expected about 30 or more.
As it will be clear later, even subtle details of controlling the
atomic motion inside diatomic molecules can be understood by
means of the classical characteristics and semiclassical distribu-
tion functions.
The plan of our paper is as follows. In section 2 we apply

the optimal control theory to optical polarization in the weak
field response. A priori pulse shape will not be conjectured.
An exact and unique solution to a maximum coherence peaked
at target time is derived for isolated I2 molecule in optically
thin media. A time reverse (phase cojugate) resonance Raman
scattering providing for a feedback to the vibrational spreading
is represented as a basic principle of the quantum control.
Controlling the pure and mixed states is considered. In section
3 we reconcile the quantum machinery with a reasoning
appealing to the classical kinematics and discuss the phase
modulated field of the scattered radiation associated with the
classical action of the recoiling wave packet. Section 4
illustrates the general formulation by the numerical simulation.
In section 5 we conclude and outline the future prospects.

2. Mapping the Matter to a Light Field

A rigorous mathematical treatment of molecular “magnetron”
necessitates to solve the quantum equations dealing on equal
footing with vibrational motions and nonadiabatic electronic
transitions.
The adiabatic dynamics of a diatomic molecule is governed

by Hamiltonian operatorsĤb ) T̂kin + V̂b andĤx ) T̂kin + V̂x.
HereT̂kin is the operator of radial kinetic energy, where the only
active coordinate is a distance between atoms, andV̂b and V̂x
model the adiabatic potentials of the B and X states, respectively.
Having the fastest vibrational motion in diatomic molecule, we
neglect the more slow molecular rotations (and the fine structure
as well), since those transients are separated by time scales.15

For heavy molecule as I2, the vibrational transient occurs on a
subpicosecond time, while the rotational transient occurs on a
longer time scale of 10 ps. Then, we can limit our consideration
by the former, because the angular correlations happen past the
vibrational ones. In fact, the rotational correction will only
require a modification of the Hamiltonians and averaging over
initial rovibrational states. As justified in the works,7,9 the
inclusion of the molecular rotations does not abandon the
dynamic quantum control of vibrational wave packet toward a
desired goal.
Throughout this paper the Condon approximation for dipole

transition momentµ is used, withµ being independent of
internuclear separation in molecule. This assumption is valid
for the weak field quantum control, when the molecular ground
state is being well localized. The electronic states are coupled
by the electric dipole operatorV̂bx(t) ) µ̂E(t), where the laser
field is

and its slow envelopE(t) of allocated durationTp is to be found
under a constrain limiting the pulse energy,

This laser field should prepare the molecular transition to a
desired goal. Let optical dipole target be a linear superposition
of weighted Diracδ-like envelopes shifted ontR,

Figure 1. The resonance curves of I2 molecule.20Our design represents
the iodine magnetron. A tailored laser pulse, as shown by the point-
filled box, excites the vibrational wave packet. Then, the wave packet
is reflected from outer curve and moves back to focus on the inner
Franck-Condon region. The result is a tight overlap with the ground
state X. The maximal optical polarization must be followed by the
resonance fluorescence burst at target time.

V(r) ) [2(ε - UB(r))/M]
1/2, τrec≈ ∫R0R0+∆R

dr/V(r)

E(t) ) E(t)eiω0t/p +
*
E(t)e-iω0t/p

J)∫0Tp dτ E(τ)
*
E(τ) (1)
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The wisdom of that representation to the resonance coherence
will be obvious further.
The Schro¨dinger equation for the wave functionsΨb andΨx

reads as

The empty B state and populated ground X state (at zero
temperature) will be of use as our initial conditionΨb(0) ) 0,
Ψx(0)) Ψx,0. Also, the rotating wave approximation is utilized
in eq 3 to avoid fast oscillations of optical frequency of the
B-X transition. Then, the resonance interaction is given by

the slow amplitudeV̂bx(t) ) µ̂
*
E(t).

Our objective consists of controlling the polarization

which in its turn manifests in the molecular optical susceptibility.
The first correction to the transition dipole momentDxb(t) in
the weak field regime is

To characterize the molecular transition, it is useful to extract
a temporal structure factor independing of the excitation field
envelopeE(τ). For this goal we introduce a wave-packet
correlation function as

This formula describes the optical polarization caused by the
δ-like pulse of electric fieldEs(τ) ) δ(τ). Modulation of the
B-X transitions is formed while theΨx,0 replica propagates
on the B curve. The bound wave packet oscillates spreading
between turning points and permits the molecule to radiate the
Raman scattering signal. In frequency domain, the erratic
spectral pattern17 of the resonance Raman intensity is accord-
ingly observed. The spectral profile of theS correlator is
represented by the KHD formula for the fundamental Raman
overtone. Its resonance dependence is given by

where γ is the damping constant; the eigenstatesΨb,m and
eigenlevelesâm can be found from eigenequationHbΨb,m )
âmΨb,m. The Stokes overtones are manifested when the wave
packet reaches a favorable position to overlap the vibrational
X states.21

To maximize the overlap between the Franck-Condon
density |Dxb(t)|2 and optical dipole targetG(t), we define the
field functional as

One should note, that given functional does not confine the
optical polarization throughout the time. However, it does
guarantee a maximal dipole moment at our objectiveG(t). The
Franck-Condon transitions develop freely beyond the target
time constrained only by the field energy in eq 1. The dynamic
quantum control begins with the X stateΨx,0, which is tightly
localized in the I-I distance at the start. The B state must be
optimally driven below the dissociation limit to avoid bound-
free transitions resulting in losses. Evident wave nature will
impede the control, in which the B wave packet having
undamped oscillation between turning points, must be focused
on the inner steep core with a maximum velocity at target time.
Those requirements will be met under a global maximum of
the field functionalF/J ) λ. This condition is set by small

variation of the probe field
*
E(τ) in the variational equation,

whereλ is the Langrange multiplier enabling to enforce the
energy constrain. Herefrom the basic problem of dynamic
quantum control in the weak field regime reduces to the
Fredholm eigenequation

where the kernel of the homogeneous equation is given by the
complex hermitian matrix

The integral kernelP depends exclusively on a chosen dipole
target and specification of the electronic transition being pump
independent in the weak field limit. In some sense, it copies
the material properties of the molecule to a light field. The
time-dependent matrix elements eq 5 forming the kernel in eq
9 have long been known in the “matter-radiation” interaction
theory, benefited to understanding nonlinear optics, and were
utilized in quantum control of wave packets with different
material objectives: the minimum space variance of wave
packets (I.S. Averbukh, M. Shapiro3), theδ-like space density
target (V. Dubov, H. Rabitz7), the minimum quantum uncer-
tainty state (K. R. Wilson et al.5,6,9).
To recall their argumentation, we shall take a quick look at

another field functional, which describes a total B population
in the weak field regime

where the self-conjugate kernelM00(τ,τ1) in eq 5 is proportional
to the S-correlator depending on the difference argumentτ -
τ1, because the molecular potentials are independent of time

Again one can repeat above steps searching a global maximum
for the functionalN/J) λ, which gives a maximum population
yield per unit field energy. Considering a small field variation
*
E(τ) for the variational equationδ(N - λJ) ) 0 , we obtain an
eigenequation

δ(F - λJ) ) 0 (8)

∫0Tp dτ1 P00(τ,τ1) E(τ1) ) λE(τ) (9)

P00(τ,τ1) )∫dt G(t)S00(t - τ)
*
S00(t - τ1) (10)

N)∫0∞ dr|Ψb
(1)(r,t)|2 )∫0Tp∫0Tp dτ dτ1 M00(τ,τ1)E(τ1)

*
E(τ)
(11)

M00(τ,τ1) ) S00(τ1 - τ)/p )
*
S00(τ - τ1)/p (12)

∫0Tp dτ1
*
S00(τ - τ1)E(τ1) ) pλE(τ) (13)

G(t) ) ∑
R
GRδ(t - tR) (2)

ipΨ̇b ) (Ĥb - ω0)Ψb + V̂bx(t)Ψx

ipΨ̇x ) ĤxΨx + V̂bx
† (t)Ψb (3)

Dxb(t) ) µ(Ψx
†|Ψb) ) µ∫0∞dr *Ψx (r,t)Ψb(r,t)

Dxb(t) ) -i∫0Tp dτ S00(t - τ)
*
E(τ), (t > Tp) (4)

S00(τ) ) µ2

p
(Ψx,0

† |e-iτĤb/p|Ψx,0) (5)

Ir(ω) ∝ |∫0∞ dτ eiωτ/pS00(τ)|2 )

µ4

p2
|∑
m

(Ψx,0
† |Ψb,m)(Ψb,m

† |Ψx,0)

γ + i(âm - ω)
|2 (6)

F )∫ dt G(t)|Dxb(t)|2 )∫0Tpdτ∫0Tpdτ1 P00(τ,τ1)E(τ)
*
E(τ1)

(7)
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We obtain the degenerated kernel having separated the time
argumentsτ and τ1 by means of the unity decomposition
∑mΨR,mΨR,m

† ) 1. Then, a solution to the integral equation
can be cast as

Unknown coefficientsEm are found from the system of linear
equations taken at a maximal eigenvalueλmax

The matrixMm,n is formed by the Franck-Condon factors and
energy levels of the B state

The optimal fieldE(τ) depends on the oscillator strengths of
the molecular transition in eq 16, which includes factors of the
increasing frequency due to the energy ladderâ0 < â1 ...< âm
< ... of vibrational levels. This field must steadily populate
the molecular states. It is expedient to put on the textbook
Condon’s model of the molecular transition between the
parabolic curveVx ) MΩ2 r2/2 and flat continuumVb ) const,
where the S-correlator is the following:

The phase profileφ0(t) ) arctan (Ωt/2) is provided by the
spreading wave packet in continuum which is projected to the
ground vibrational state. On using a slope molecular curve,Vb
) -fr models the repulsive Franck-Condon region and
recoiling wave packet. The phase correctionφ(t) ) φ0(t) +
t(ft)2/(12Mp) is explicitly derived in the model dealing with the
momentum representation of wave packet dynamics. The
amplitude correction turns out to be of Gaussian type and like
the Debye-Waller factor is given by the ratio of the recoil
energyR ) (ft)2/(2M) to vibrational quantumpΩ, i.e.

The flat and slope continuum of molecular states provide for

the kernel
*
S00(τ - τ1) with negative chirp of frequency for a

short time durationτ1, when the expansion in the power ofτ1
is legitimate. The conclusion holds also in a general picture of
semiclassical approximation as demonstrated in next section.
Thus, a short pulse having positive frequency chirp slows down
the fast integrand oscillations in eq 13, enabling one to maximize
its eigenvalue (i.e., the yield of the population). The maximum
population has to involve a gain of fluorescence.22-24

Other trends of wave-packet correlations make it possible to
control a selected molecular state or coherent transients.
According to eq 9, a top eigenvalueλ gives a maximum optical
dipole transition per unit of field energy having eigenvector
Eλ(τ) as the globally optimal field of the allocated durationTp.
To demonstrate this statement we address theδ-Dirac model
as the simplest optical dipole target, where the coherent envelope
G(t) ) δ(t - td) will be peaked at timetd after turning off the
excitation pulse. The conditiontd > Tp means that the
“spontaneous” polarization will stand out on the pulse-free
background. Theδ-like target model results in the degenerate
Fredholm kernel. An unique solution to the integral equation

is explicitly written as

where td marks a moment when the optical polarization is
regained withλ being the normalized coherent yield

The indication of optimality according to Bellman principle is
indeed realized: the control depends on the state of system at
the current moment alone. This globally optimal fields can be
understood in general terms, for their envelopesEλ(τ) match
those of the wave packet correlations representing the time-
reversed resonance scattering. The delay timetd fits an absolute
maximum of the optical transient to target timeτ ) td. The
dipole transition moment is given by the convolution integral

The optimal field in eqs 17 and 19 cancels out the fast oscillating
behavior of the integrand as being designed to have the phase
conjugate wave-packet correlations excited by theδ-like pulse.
The optical transient by virtue of eq 19 exhibits periodical
recurrences, having the maximum magnitude-i(Jλ)1/2 exactly
at the target timetd.
The straightforward extension of theδ -dipole target to the

realistic shapeG(t) specifies an eigenvalue problem in eq 9.
The integral operatorP can be decomposed into sum of the
degenerate kernels according to eq 10 in the weak field limit.
The solution is

where theER is the eigenstate at a top eigenvalue of the system

The matrix coefficients are given by

so that the optimal field satisfies the energy constrain by the
definition.
We have established an important fact, which merits to be

reformulated as a reversibility theorem asserting sufficient
conditions to reverse the spread wave packet in time:To driVe
molecular transition to the polarization target G(t), the optimal
field should be made of superimposed phase conjugate fields
of the resonance Raman scattering of ultrashort pulses of
amplitudes GRER/λmax at the delay time tR.
The resonance scattering radiation itself may seem to be

“erratic” in time. The wave-packet collapse and spreading and
destructive interference are responsible for the apparent noise
due to molecular “disorder” on account of potential anharmo-
nicity, uncommensurate frequencies, curve crossing, etc. But
phase conjugate feedback with respect to molecular correlations
(resonant scattering) allows the wave packet to be recovered at
a fixed space-time point at will. The optical coherence can
be restored not only for the Raman fundamental overtone. Our
treatment might be readly extended to controlling the high
overtones of molecular resonance scattering.

E(τ) )
µ2

λmaxp
2
∑
m

(Ψx,0
† |Ψb,m)e

iâmτ/pEm (14)

Mm,nEn ) λmaxEm (15)

Mm,n ) (Ψb,m
† |Ψx,0)(Ψx,0

† |Ψb,n)
ei(âm-ân)Tp/p - 1
i(âm - ân)

(16)

S00(t) ) (1+ iΩt/2)-1/2 ) A0(t) e
-iφ0(t)/2

A(t) ) A0(t)e
-R/(2pΩ)

Eλ(τ) ) S00(td - τ)(J/λ)1/2 (17)

λ )∫0Tp dτ S00(td - τ)S00(td - τ) (18)

Dxb(t) ) -i(J/λ)1/2∫0Tp dτ S00(t - τ)
*
S00(td - τ) (19)

E(τ) ) ∑
R

S00(tR - τ)GRER/λmax (20)

P̂RR1
ER1

) λmaxER (21)

P̂RR1
) GR∫0Tp dτ S00(tR - τ)

*
S00(tR1 -

τ) (22)
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We term the field enabling to squeeze the optical coherence
as a quantum hologram to note its key role for a wave-packet
interference in the Franck-Condon region. The quantum
holography is relying on the wave-packet correlations, which
can be found by detecting a fluorescence or population created
by two-phase locked ultrashort pulses. Accordingly, in the limit
of weak field, the excited-state B is obtained from eq 3, in the
first order to the resonance interaction as

This superposition is obvious analogue of an incident and object
waves in optical holography. To produce the quantum interfer-
ence of wave packets, the first laser pulse att ) 0 must be
followed by the delayed pulse att ) T. If the laser pulses are
phase locked and their areas are small with respect toπ, the
populationN of the state B contains the contribution14 of the
one-photon two-pulse interference, i.e.,

The alternative pathways in course of the Franck-Condon
transitions depend on the delay timeT between pulses. This
dependence is being just required to controlling the wave-packet
motion. The phase-locked laser pulses must retrieve synphase
and quadrature components of theS correlator. The LIF
signal,14 ionization channel,25 or other means for the matter-
wave interferometry may be employed. Then, the use of
programmable optics26,27 and algorithms based on the revers-
ibility theorem fed into computer codes can be made to tailor
the optimal field. This quantum holography program must be
realized to rebuild the well-localized replica of the ground state
or to squeeze optical coherence as called on even for unknown
molecular curves as well as collisional or intramolecular
dephasing and relaxation.
The reversibility theorem still holds for mixed states inevi-

tably residing in statistical systems, for which irreversible
processes hamper the quantum control of the wave packets. By
considering the nondiagonal density matrix of the resonance
transition F̂Râ ) 〈Ψ̂R

†Ψ̂â〉, the brackets〈...〉 symbolize an
ensemble averaging in quantum kinetic theory. Here, the
populationsF̂xx ) 〈Ψ̂x

†Ψ̂x〉, F̂bb ) 〈Ψ̂b
†Ψ̂b〉 and polarizationF̂bx

) 〈Ψ̂b
†Ψ̂x〉 adhere to the kinetic equations:

where the rectangular brackets [...] denote a quantum commuta-
tor Ĥ ,F̂ - F̂,Ĥ of the operators which are represented in the
matrix notation as

A phenomelogical damping matrixΓ̂ designates the overall
losses in irreversible processes for collisions, spontaneous
radiation, etc. Experiments in solids, liquids, and gas cell
conditions indicate an existences of coherent vibrational tran-
sients of I2 to tens of picoseconds.14 Thus, the quantum control
theory within the matrix density formalism, in which the
relaxation will not be scrutinized further, may be applied.
Just as for pure states, we take care of the optical polarization

F̂bx at target time. One can immediately maximize the overlap

between the optical transitionFbx and its dipole target in eq 2.
By letting the polarization operatorF̂bx be a complex valued
quantity, we define an overlap functional as

where another field functionalP00(τ)} is easily obtained from
eqs 25 and 26 to be

The functionalF is indentified as a work that a given target
G(t) would produce on the Franck-Condon transition. This
statement can be readily understood, since according to eq 25
the field functionalF can be rewritten as the populations
difference due to the target field “action”

To maximizeF, we apply the standard variational procedure
of eq 8. The dynamic quantum control in the weak field limit
reduces to a problem of a linear mathematical programming.
As a bonus of the approach, no integral equation needs to be
solved at all, because, even for any target shapeG(t), the
variational equation

results in an unique solution:

By using the empty B state and populated state X,F̂bb ) 0 F̂xx
) F̂0, as the initial conditions, we set that

and the maximum coherent yieldλ becomes explicitly known
from the energy constrain represented as

By choosing the pure stateF̂0 ) Ψx,0
† Ψx,o for the initial

condition, we recover the main result of eq 5, as it must. Matrix
density formulation has the advantage of being applied to
irreversible physical systems of gas and condensed matter. The
predissociation47 and caging phenomena can be considered as
well. What is more, the observation and control of wave packets
is in the progress8,9 and includes rearrangement of subtle
chemical structures in solids and liquids. Having postponed
the feasible generalization, we shall discuss in next section the
reversibility theorem in the semiclassical uniform approach.

3. Semiclassical Approximation

The semiclassical limit of quantum dynamics is characterized
by classical equations, that require to be supplemented by the
quantum initial conditions to take full account of the singularity

F ) -µ∫dt Im{G(t) Tr{F̂bx}} )∫0Tp dτ Re{*E(τ)P00(τ)}
(27)

P00(τ) )

µ2

p
∫dt G(t) e-Γ(t-τ) Tr {e-i(t-τ)Ĥb/p [F̂xx - F̂bb] e

i(t-τ)Ĥx/p}

(28)

F ) -∫dt ImTr[G(t)F̂bx(t)] ) p∫dt Tr[ Ḟ̂b(t) - Ḟ̂x(t)] )

p(Nb - Nx)

δ(F - λJ)/δ
*
E(τ) ) 0

E(τ) ) λ-1P00(τ) (29)

P00(τ) ) µ2

p
∫dt G(t)e-Γ(t-τ)Tr{e-i(t-τ)Ĥb/pF̂0e

i(t-τ)Ĥx} (30)

λ2 ) J-1∫0Tp*P00(τ)P00(τ)dτ (31)

Ψ̂b
(1)(t) ) -iθ1e

-itĤb/pΨ̂x,0(0)- iθ2e
-i(t-T)Ĥb/pΨ̂x,0(T) (23)

N)∫0∞ dr|Ψb
(1)(r,t)|2 ) |θ1|2 + |θ2|2 + Re{θ2

*
θ1 S00(T)}

(24)

ip
∂F̂
∂t

) [Ĥ,F̂] - i(Γ̂F̂) (25)

F̂ ) (F̂bb, F̂bx
F̂xb, F̂xx ), Ĥ ) (Ĥbb, V̂bx

V̂xb, Ĥxx
) (26)
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p ) 0. The former is clear, only classically possible paths
joining R0 with R1 contribute to theS-correlator. These paths
are invoked by Hamilton’s principleδW ) 0, where the classical
action is

If the action is known, it enables us to find a momentumP0 )
-∂W(R0,R1,t)/∂R0 and density of states∂P0/∂R1. Appearance
of the derivative of classical trajectory in determining the density
distribution in phase space is not occasional.28 The quantum
transition amplitude connecting the pointsR0 andR1 depends
on Plank’s constantp and cannot be deduced from the classical
postulate. Instead, the quantum grounds dictate

The probability density,|K|2 ) (2πp)-1δP0/δR1, stems from
the total number of atoms reached the pointδR1 started out
from the point R0 and having the classical actionW )
W (R0,R1,t). Equation 33 does not give the quantum amplitudes
correctly for certain space-time points. Suffering from known
drawbacks, it fails in the classically forbidden region, caustics,
and turning points. The story is old as the quantum theory itself.
However, for our goals, the semiclassical approach does at least
serve to a clue idea about the quantum control.29

The classical actionW is inherited by the phase of electric
field promoting resonant B-X transition. By this, the optimal
laser field is related with the S-correlator which projects the
wave packet B to the ground-state X. The latter is centered at
R0 ) 2.7 Å in the I-I distances with the variance∆R ) 0.05
Å being much less than the Franck-Condon region extension
itself. Hence, the mere closed paths passing the pointR0
contribute to the optimal field. We can present its phase by
the classical action eq 33 expanded for ultrashort pulse as

in the vicinity of inner turning pointR0. The potentialUb(R0)
plays the role of frequency detuning of the B-X transition.
Owing to zero velocityṘ0 ) 0, its linear chirp will be negligible
as compared with the nonlinear chirping. Instead, there is a
significant quadratic chirp- M(R̈0)2τ2t as adominant feature
of accelerationR̈ ) -M-1(dUb(R)/dR) due to the steep inner
core. By travelling a distanceδr in vicinity of R0, the wave
packet detunes down the resonant frequency onδr(dUb(R)/dR).
The greaterδr ) R̈0τ2 the smaller the frequency of B-X
transition. This gives the negative chirp, which qualitatively
is in agreement with the known reasoning.6,29 In practice, for
a more longer pulse duration, this simple classical expression
may overestimate the chirp rate, because the particle also travels
far from the steep potential in a less repulsive Franck-Condon
region. Reduction of frequency modulation, as well as linear
chirping owing to a wave packet velocity, is quite possible.
Care must be taken to the turning points, where the semiclas-

sical transition amplitude postulated in eq 33 diverges∂R1/∂P0
) 0. This is the case for our molecular magnetron design, in
which the wave packet must be focused just in vicinity of the
inner turning point. This severity can be circumvented by the
uniform approach based on the Wigner representation of
quantum operators. To find theS-correlator density, we must
overlap the initial and propagated distributions in the phase space
s ) (r,p),

whereR ) R(-t; s, 0) andP ) P(-t; s, 0) being the current
coordinate and momentum of a particle experiencing the force
-∂Ub(R)/∂R. The classical integrals of motion are fixed by the
initial conditionsR(0; s, 0)) r andP(0; s, 0)) p in the phase
space. According to the Newton laws, the particle travels as

and the Wigner density function obeys the transport equation:

Hence, the solution isF0(R(0; s, t), P(0; s, t)) propagating along
the trajectory passing the points in time t with the distribution
for the ground X state, which is defined as

where

The Wigner function of the ground state X is sharply peaked at
the pointq0 ) (R0,0) having Gaussian variances (∆R,p/∆R) in
the coordinates and momenta, respectively. The classical orbits
passing this stretched ellipse make a major contribution to the
S-correlator amplitude.48 Then, one can apply the fastest descent
method to estimate the amplitude in eq 35. We expand the
exponent functionalF(R,P) to second order in the declines from
the paths0(t) ) (R(0;q0,t), (P(0;q0,t)) passing the equilibrium
point q0 of the ground X state. The family of orbits in its
neighborhood contributes significantly. Thus, this topology
determines basically a quadratic form

The functionF0 ) F(s0(t)) is taken on the paths0(t). A small
stirring of its initial condition yields the four first and six second
derivatives ofRandPwith respect to two-dimensional indices
s) (r,p) or s1 ) (r,p). Then, the quadratic form is settled by
the 12 related functions:

Of course, these functions adhere to Newton’s equations and
their derivatives. The useful vector and matrix notations

simplify the resulting Gaussian integral:

The derivatives of the classical path with respect to its starting
point in the spaces represent the states density already
mentioned in this section. Now we see that a given method

|S (t)|2 ) µ4

p2
∫s dr dp F0(r,p)F0(R,P) (35)

Ṙ) P/M P) -∂Ub(R)/∂R (36)

∂F0(s,t)
∂t

+ p
M

∂F0(s,t)
∂r

-
∂Ub(r)

∂r

∂F0(s,t)
∂p

) 0 (37)

F0(r,p) )∫-∞

∞ dq
2πp

eiqp/pΨx,0
† (r + q

2)Ψx,0(r - q
2) ) 1

πp
e-F(p,r)

(38)

F(p,r) ) ((r - R0)/∆R)
2 + (p∆R/p)2 (39)

F(R,P) ) F0 + Fs
0 (s- q0) + 1

2
Fs,s1
0 (s- q0)(s1 - q0) + ...

(40)

R(0;q0,t), P(0;q0,t), Rs(0;q0,t), Ps(0;q0,t), Rs,s1(0;q0,t),

Ps,s1(0;q0,t)

VB ) (Fr
0, Fp

0); F̂ ) ((∆R)-2 + Frr
0 /2, Frp

0

Frp
0 , (∆R/p)2 + Fpp

0 /2)
(41)

|S (t)|2 ∝ p-1(detF̂ )-1/2 exp(-F0 + 1/4VBF̂ -1VB†) (42)

W (R0,R1,t) )∫0t dτ(M2 Ṙ2(τ) - Ub(R(τ))) (32)

K (R0,R1,t) ) 〈R0|e-itHb/p|R1〉 )

(-2iπpδR1/δP0)
-1/2 exp(iW (R0,R1,t)/p) (33)

W (R0,R0,td-τ) ) W (R0,R0,td) + Ub(R0)τ - M(R̈0)
2τ3/3

(34)
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leads to the determinant in denomenator to set a density of paths
contributing to the quantum amplitude. In fact, this determinant
is dictated by the uncertainty principle for the conjugate
variables such as coordinate and momentum. The merit of the
average density valid for all paths, having the quantum spreading
fixed by the initial distribution, is evident at the caustic and
turning points. Here, the zeroth derivativeRp(t;s,0)) 0 provides
for the concentration of the classical paths, for which the Van
Vleck’s determinats diverge.28,29,31 However, our determinantal
relation still remains to be a good solution for the quantum
amplitude.
It is necessary to look more closely at the semiclassical recipe

to gain insight about a frequency modulation of wave-packet
correlations. TheS-correlator is written as a trace of the
polarization density matrix, see also eq 30,

With initial condition F̂(0) ) F̂0, a solution formally satisfies
to

The transport equation for the nondiagonal matrix element
Fbx(t) is immediately obtained with accuracyp2 to be sure
containing the description of quantum interference on the
Franck-Condon transition:

The difference potentialUd(r) ) Ub(r) - Ux(r) defines corre-
sponding resonant frequencies. An average potential is the half
sum of the molecular curvesUa(r) ) (Ub(r) + Ux(r))/2. The
equations of motion are

So that, theS-correlations are represented as an integral of local
density with fast oscillating exponential prefactor in the space
s given by the expression,

At the start, the functionF0(s(0)) ) F0(R(0;s,0), P(0;s,0) has
the quite simple shape of a Gaussian distribution. Its contour
lines look like the stretched ellipses. Then, the map exhibits a
complicated topology due to winding motion around a minimum
of the average potential and its anharmonicity. Together with
the fast oscillating functional for the difference potential of the
B-X states, it presents a challenge to calculating the trace
integral representation for ‘topological singularities’ of the
turning point structure, which is common for the semiclassical
approximations of wave mechanics.31

The solution to our problem is written down in Langrange
coordinatesS ) (R,P) ) (R(0;s,t), P(0;s,t)). By virtue of
Liouville theorem, the phase volume in the jacobian transforma-
tion from Euler to Lagrange variables is invariant, while
molecular potentials are independent of velocity. In the
Langrange picture

the basic integrand becomes a function ofR, P

To expand the path functionalΦ in the exponent to the second
order in departures from the pointq0, we use a series

where

and the paths0(t) ) (R(0; q0, t), (P(0; q0, t)) obeys eq 45. By
reusing the vector and matrix notation again, one can represent
the final expression as a two-dimensional Gaussian integral

where the vectorUB and matrixΠ are given by

The phase modulation is set by the functionΦ0(t). Additional
corrections in the exponent are responsible also for the decay
amplitude giving generalized Debye-Waller factors for wave-
packet recoiling. The phase and amplitude formulas may be
simplified due to peculiar features of molecular curves, short
times evolution, etc. This approach would be of interest to
address Landau-Ziner transitions, and the spectral lines struc-
ture from impact center to static wings may be uniformly
exploited. An analytical formulation of the globally optimal
fields has some advantage of being used to model the molecular
wave-packet correlations. On propagating in a space the laser
pulse might be tailormade to mimic the known optimal fields.
With this aim the high frequency filtering in optical guides,
nonlinear frequency dispersion, reflection from holographic film,
gratings, etc. giving the right temporal and spectral trends may
be adapted to perform the quantum control.
As an example, we will discuss a chirping in static wing of

spectral molecular line. Accessed by the ultrashort pulse, the
wave packet develops in the average potentialUa(R) between
points connected by the direct path. For a smallτ (a femto-
second scale), these points are close together on the trajectory

The difference potential in eq 46 can be expanded for the small
departures from the equilibrium pointq0, and we may rewrite
the frequency inΦ0 as a power series for a smallτ

Since the condition dUx(R)/dR) 0 (zero force) should be met
in R) R0 (at a minimum of X curve), the result is the quadratic
chirp lowering the pulse frequency with a correction coefficient
of 0.25 to its classical rate in eq 34. The correction of this sort
is not surprising for the classical-semiclassical-quantum
correspondence. Moreover, considering more closely the phase
and amplitude modulation of wave packet correlations resulted
fromUBΠ̂-1UB† in eq 49, one can find additional corrections due

F̂(t) ) exp(-iΦ(S,t))F0(S)

Φ(s,t) ) Φ0 + Φs
0(s- q0) + 1/2Φs,s1

0 (s- q0)(s1 - q0) + ...
(48)

Φ0 ) Φ(s0,t) )∫0t dτ Ud(R(τ;q0,0))/p

S (t) ) (µ/p)2(detΠ̂)-1/2 exp(-iΦ0 - 1
4
UBΠ̂-1UB†)

(49)

UB ) (Φr
0, Φp

0);

Π̂ ) ((∆R)-2 + i Φrr
0 /2, i Φrp

0

i Φrp
0 , (∆R/p)2 + i Φpp

0 /2) (50)

R(τ; R, P) ) R+ τP- (τ2/2M) (dUa/dR)

Ud(R(τ; q0, 0)) Ud(R0) - (τ2/2M) (dUa/dR0)(dUd/dR0) )

) Ud(R0) - (τ2/4M) (dUb/dR0)
2

S00(t) ) µ2p-1Tr{F̂(t)} ∝∫s dr dp F(s,t)

F̂(t) ) e-itĤb/pF̂0e
itĤx/p (43)

∂F(s,t)
∂t

+ p
M
∂F(s,t)
∂r

-
∂Ud(r)

∂r
∂F(s,t)
∂p

-
Ud(r)

ip
F(s,t) ) 0 (44)

Ṙ) P/M Ṗ) -∂Ua(R)/∂R (45)

Tr{F̂(t)} )∫s dr dp e-i∫0tdτUd(R(τ;s,t))/pF0(s(t)) (46)

Tr{F̂(t)} )∫SdRdP e-i∫0tdτUd(R(τ;S,0))/pF0(S) (47)
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to recoil from the slope molecular curve. The first nonvanishing
terms of the powerτ andτ3 in the exponent are an exact match
the quantum formulas in the Condon model (see section II after
eq 16). It is worth stressing that the wave packet is found in
the coherent superposition of two resonance states (i.e., B and
X, and their mixing will reduce the chirp rate on the classically
gained formula in eq 34) because the molecular force acts only
through the curve B (in recoiling from the inner curve), and
does not in the equilibrium point of curve X.
This argumentation must be revised further for returning

trajectories on a long time duration. In the case, our uniform
treatment warrants a more careful study that will be reported
elsewhere. For completeness sake, the basic ideas of quantum
control should be examined in a quantum simulation, which is
favored to the semiclassical treatment, if one cannot limit by
one classical path. Thus, in the next section, we shall rely on
the quantum computation leaving aside a detailed numerical
analysis of the classical equations.

4. Numerical Simulations

The quantum model eq 3 for the motion along one active
I-I coordinate and electronic transition belongs to the polyno-
mial class of numerical complexity ofN linear equations, where
N is the number of grid points. There is more than one recipe
with which to perform their computations.32 The QR diago-
nalization requires theO(N3) operations. In specific cases, the
QR algorithm, as a stable spectral decomposition, can be used
for the wave-packet propagation. The time implicit symmetrical
schemes of Gaussian elimination33 necessitateO(N) operations.
The symmetrized split operator method doesO(Nlog(N)) steps
based on the fast Fourier transform (FFT).34 The FFT propa-
gates the wave packet similar to Feynman’s path integral and
alternates the coordinate and momentum representations involv-
ing the thorough dynamical picture in hand. These methods
are in good agreement. The practical value of FFTs or Gaussian
elimination is that they enable to get rid of the matrix
diagonalization.
The absorbing boundary condition has been used in the

numerical simulations. The imaginary negative optical potential
discriminates the outgoing wave packet at outer edge of the
numerical grid and has no effect on the bound states. This
feature is visible in Figure 2, where the molecular dynamics
following impact resonance interaction on B-X transition is
shown. The ground state replica transforms into a wave packet
which is scattering above the molecular dissociation limit and
binding below it. The scattering states, shown in the foreground
of Figure 2, are involved due to impact photodissociation (i.e.,
the δ-like pulse action). This branch is not mixed with the
bound-bound transitions responsible for coherent recurrences,
while the wave packet recoils against the molecular walls and
oscillates spreading for the B state anharmonicity.

The resonance scattering radiation in the wake of ultrashort
pulse proceeds in two stages: a fast monotonic decay due to
direct photodissociation gives way to a “nonregular” reviving.
This picture is shown in Figure 3 for the fundamental overtone
of Raman intensity. Since a damping out is assumed to be
small, the wave packet correlations hold during many molecular
periods. The amplitude and phase profile will follow in reverse
order. Thus, Figure 3 showing its fundamental overtone
intensity must be read “ from right to left”. The phase conjugate
scattering signal in Figure 4a has been designed to drive the
spread waves towardtd. The target timetd exactly represents
the starting point of wave-packet correlations. Furthermore, on

Figure 2. The picture shows the nodal structure of bound wave packet
ranging between 2.2-4 Å. The wave packet fringes are due to
interference of the wave packet in virtue of multiple collisions against
the molecular curves.

Figure 3. Intensity of fundamental overtone of resonant scattering as
a function of time. This resonance transition is induced by the photon
impact (the δ-like pulse). The scattering B states contribute to
monotonic free decay signal first few fs. The bound states interference,
present in the background in Figure 2, is responsible for reviving the
resonance Raman scattering after 320 fs delay, which is matched with
a molecular period (at 570 nm in B state).

Figure 4. The square 1 ps gate of the optimal field in a. This optimal
field creates the dipole transition moment shown in b. The accomplish-
ment of our coherent objective is evident at target time equal to 1.5
ps.
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going back in time their envelopeS(td - τ) is notδ correlating
as a white noise signal.
There are two regular trends: the negative frequency chirp,

which has been explained with the semiclassical arguments, and
amplitude growing to the pulse end. The last feature stemmed
from the reversibility theorem can be also understood qualita-
tively. Since the wave packet is spreading between turning
points, the result is a small amplitude almost everywhere in the
classically accessible Franck-Condon region. The optimal field
on its start is set by a projection of the spread wave packet to
the X state. TheS-correlations undergo fast oscillations due to
multiple recoils of the wave packet against molecular walls and
its spreading accompanied by decreasing amplitude. Evolving
back in time, the wave packet becomes more regular and its
shape is recovered and copies well localized replica of the
ground X state. Focusing the wave packet in the vicinity of
the inner turning point results in a further rise of its amplitude.49

The projection to the ground X state grows together. This
explains why the globally optimal field behaves in such a way
in Figure 4a. Induced resonance transient given by eq 4 is
shown in Figure 4b. The 1 ps square gate of optimal field
creates the transient spike at delay time 1.5 ps. The temporal
full width at half maximum (fwhm) equalsTw ) 25 fs that is
in good agreement with the kinematical overlap lifetimeτrec)
15 fs.
This semiclassical estimate is astonishingly accurate although

less than quantum computed. There are two main reasons of
this distinction. The wave-packet interference is absent in the
classical kinematics and the dispersion of excited state is not
taken into account. Thus, the ignorance of quantum wave nature
underestimates the width of the coherent peak. To cure the
situation, the semiclassical uniform approach, which copes with
initial quantum distribution, classical motions, caustic and
turning points, may be applied.
For definiteness sake, settingTg ) 50 fs square gate of optical

targetG at the delay time 1.5 ps, we now can consider a realistic
optical transient. Averaging the globally optimal envelope over
Gwashes out the high frequency components as shown in Figure
5. However, the average pulse shape is yet endowed with a
chirp. This feature is exhibited in Figure 6 a, where Wigner

spectrogram is shown. The Wigner function of the optimal
fields is defined as

Picosecond square gate envelope and periodic boundary condi-
tion have been used in evaluating the spectrograms. The
frequency-time maps manifest a striking correlation between
the optimal fields and wave-packet evolution. For instance, the
envelop of allocated durationTp ) 1 ps consists of more shorten
subpulses. Their number is associated with the number of
vibrational cycles between turning points duringTp. For every
recoiling from inner molecular core the wave packet gives rise
to a subpulse. The contour levels of the two-dimensional
Wigner spectrogram are taken at one-half a maximum height.
A slope and concavity characterizes respectively a linear and
quadratic frequency chirp of subpulse. The semiclassical
reasoning relate the chirping to wave packet velocity and
acceleration. The chirp is in fact linear because time duration
of pulseTp (in picosecond range) is much more than the recoil
lifetime τrec) 15 fs. Thus, the wave packet is far from turning
points and does not accelerate most of the time. The spectral
fwhm in Figure 6a is about∆ν ≈ 500 cm-1, being consistent
with the reciprocity relation∆ν ) 2πp/∆Tg.35
A minor decoherence of the objective as shown in Figure 6b

is obtained in our numerical simulation. The temporal fwhm
is about 60 fs being 10 fs over the square gate target widthTg
) 50 fs. The distinction stems from the wave packets quantum
dispersion. The wave packet dynamics is displayed in Figures
7 and 8. The resonance frequency is 19050 cm-1 above the

Figure 5. The intensity of optimal field in a and its real part in b.
This optical pulse is designed to create 50 fs square gate optical
coherence at target time 1.5 ps.

Figure 6. The frequency-time plot of the globally optimal pulse for
the 50 fs square gate target is given by the contour map at half a
maximum of Wigner spectrogram in a. The coherent transient in b is
created by the optimal field. The temporal fwhm equal to 60 fs fits
well the 50 fs square gate target.

W(t,ν) )∫ dτ
2πp

eiντ/pE(t + τ
2)
*
E(t - τ

2)
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ground X term; the excitation bandwidth is about 500 cm-1

(fwhm). Thus, the wave packet B is created below the
molecular continuum to spread from 2.2 to 4 Å not far from its
dissociation limit. Given intensity of transitions, the depopula-
tion of state X is involved to the pulse end, although the X

state localization is not affected at the saturation. The optical
transient rises and falls, following the wave packet recoils from
the inner core. The spatial variance of a maximum focused
wave packet at target time reaches 0.04 Å, being slightly less
than the original localization in agreement with our qualitative
reasoning. The result is robust to slow sinusoidal or gaussian
aberrations of optimal fields and akin to known stability of phase
conjugate fields due to the wave speckle structure.36

5. Conclusion and Future Perspectives

The numerous possible applications in femtosecond spec-
troscopy are rested on the concept of coherence. The proceed-
ings of Femtochemistry III Conference in Lund testify (see the
special issue of theJournal of Physical Chemistry), that this
realm of knowledge is flourishing and another lines of researches
have now been opened. As an example we refer the field of
deemed quantum computers.37-39 Here, controllable coherence
of logic gates could boost performance of massive parallel
computation exponentially with number of quantum nodes.
These nodes may be constituted from clusters or single
molecules and their resonance optical transitions must act in
concert with vibrational wave packets captured by “molecular
cavities”. A run stage of a quantum computer, its coherence
may not be affected by environment.40 Thus, the danger of
dephasing requires the optical coherence to be actively controlled
according to a state-mapping protocol. From this point of view,
the reversibility theorem stated in our paper exemplifies a
paradigm of controllability expected for wave packets dynamics
and optical transients. In fact, the fundamental connection
between physical laws and computations based on time revers-
able Hamiltonians has been addressed yet by R. Feynman.41

The computational quantum networks requires the reversable
transmission among distant nodes.42

The central aim of this paper is to set a globally optimal
solution to a maximum squeezing the optical coherence of a
single molecule. The sufficient conditions of recovering coher-
ence have been stated in the reversibility theorem. Our time
reversed fields have been tested in the model computation of I2

B-X transition confirming effeciency of the phase conjugate
resonant Raman scattering for quantum control. The result is
not limited only to diatomic molecules in gas or condensed
states, but is valid for the quantum control of electron wave
packets as well.43,44

The four-wave mixing interaction and related stimulated
Raman emission is deserving of mention. These optical
transients would make it possible to automate the quantum
control to be held both for bound states and molecular
continuum. To take one example, ultrashort transform limited
pulses driving bound-free transitions result in the photon echo
of photodissociation,45 to mean an automated controlling wave
packet motion. Photon echoes19 imply that dynamical holo-
grams are written on resonance Franck-Condon transitions. But
it takes more strong laser fields to induce at least the third-
order nonlinear polarization. A self-adaptive “quantum mirror”
has been devised36,46 to reverse wave evolution on curing the
optical aberrations of a noise wave front propagated trough
inhomogenious media. Moreover we have seen that the phase
cojugate (time-reverse) Raman scattering negates also delocal-
ization of molecular wave packets.
The use of the phase conjugate signals presents an intriguing

illustration of how the original quantum state is restored in the
matter-wave interferometry. An uniform semiclassical formula
has been derived for the optimal field envelop. The simple
estimates are contrasted with quantum simulation. We conclude

Figure 7. The tailored field shown in Figure 5 excites the delocalized
vibrational wave packet in a. The X state in b holds its initial spike
shape centered at 2.66 Å with variance 0.05 Å.

Figure 8. The wave packet B free propagates after the pulse to a tightly
squeezed state at the inner turning point to overlap well the ground-
state X at target time 1.5 ps.
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that femtosecond coherence of a single molecule must exist in
varied conditions (even on resonant transitions saturated to the
pulse end). Robustness of our molecular magnetron design has
been demonstrated also. We propose to test experimentally the
molecular magnetron design verifying the quantum holography
directly on observing delayed sparks of femtosecond fluores-
cence which is excited by a more long picosecond pulse in
optically thin sample.
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